考生们在准备考研数学的时候,必须弄懂数学的证明有哪些,才能更好的进行复习。小编为大家精心准备了考研数学证明的指南攻略,欢迎大家前来阅读。
考研数学必须弄懂6个证明
一、数列极限的证明
数列极限的证明是数一、二的重点,特别是数二最近几年考的非常频繁,已经考过好几次大的证明题,一般大题中涉及到数列极限的证明,用到的方法是单调有界准则。
二、微分中值定理的相关证明
微分中值定理的证明题历来是考研的重难点,其考试特点是综合性强,涉及到知识面广,涉及到中值的等式主要是三类定理:
1.零点定理和介质定理;
2.微分中值定理;
包括罗尔定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用来处理高阶导数的相关问题,考查频率底,所以以前两个定理为主。
3.微分中值定理
积分中值定理的作用是为了去掉积分符号。
在考查的时候,一般会把三类定理两两结合起来进行考查,所以要总结到现在为止,所考查的题型。
三、方程根的问题
包括方程根唯一和方程根的个数的讨论。
四、不等式的证明
五、定积分等式和不等式的证明
主要涉及的方法有微分学的方法:常数变异法;积分学的方法:换元法和分布积分法。
六、积分与路径无关的五个等价条件
这一部分是数一的考试重点,最近几年没设计到,所以要重点关注。
考研数学搞定线性代数的诀窍
一、注重理解基本概念、基本性质
从历年试题看,线性代数主要考查考生对基本概念、性质的深入理解以及分析解决问题的能力,需要考生能够做到灵活地运用所学的知识,熟记一些解题方法去解决线性代数问题。所以大家在复习过程中要准确理解线性代数的基本概念,基本性质,为了深刻记忆, 同学 们可以结合一些例题和练习题来训练,只要概念和方法理解准确到位,多做些相关题目,考试时碰到类似题目就一定能够轻松正确解答。基础知识的复习主要是在基础阶段进行,也就是今年暑期之前,要特别指出的是在基础阶段的复习中,不要轻视对教材中一般习题的练习,一定要配合各章节内容做一定数量的习题,总结一般题型的解题方法与思路。在此过程中,不要过多地去追求复杂的题,要脚踏实地、全面仔细地复习,凡是考纲上有的内容,就不要遗漏。这个阶段虽然涉及综合性、提高性题型不多,但基础打得好将为下阶段全面综合复习创造一个有利前提,而且,试卷中多数综合性、灵活性强的考题,其关键之处也在于考生是否能够适当运用有关的基本概念、性质和方法。
二、认真分析考试大纲,抓住考试重点
考试大纲是最重要的备考资料,从历年的数学大纲来看,每年基本上不变,所以同学们可以先参考2016年考研数学大纲,将大纲中要求的考点仔细梳理一下,一定要明确重点,不要在不太重要的内容和复杂的题目上投入太多精力。而对于线性代数的重点考查对象一定要重视,例如,线性方程组的求解基本上每年都会以解答题的形式考查,矩阵的特征值、特征向量以及化成对角矩阵是考试频率最高的,也是较难的一类题目,这类问题的关键,所以平时复习要加强这类题型的训练。另外,围绕向量的秩的考查也是考试的重点,大家在复习过程中一定要深刻理解它们的性质。
三、重视练习考研真题
真题是最具有代表性的资料,因为线性代数考试内容和技巧比较单一,变化相对少,所以在考研真题题型中的重复率可以达到90%,因此我们要加强对历年真题的重视,尤其是近十五年的真题,总体来讲,做真题可以分两步。第一步,做套题,这样一是可以检验复习的水平,发现概念和内容上不熟悉的地方,另外为真正的考试积累经验。第二步,按照章节分类解析,在第一步基础上,有些题目有可能会做错,把它们记下来,在进行各个章节专题训练时强化知识和方法。最后,把近十五年的真题再研究一下,弄清楚常考的是哪些内容,把考试题型彻底熟悉,并且要会正确解答。一定不要过多的花时间去理解其它无关或者非重点内容。
四、模拟练习必不可少
最后冲刺阶段,需要回归教材,把课本再认真梳理一遍,查遗补漏,将知识明确化、系统化。另外,可以做几套模拟试卷。从知识点到做题思路,解题技巧,答题顺序等各个方面进行强化训练,千万不要做太难太偏的模拟题,不然会做无用功,甚至对考试失去信心,也起不到“实战”的价值。考前两天将重要公式回顾一遍。通过完整的复习,形成最终的竞争力,考出最好的 成绩。
考研数学需掌握的易考点
▶1.几个易混概念
连续,可导,存在原函数,可积,可微,偏导数存在他们之间的关系式怎么样的?存在极限,导函数连续,左连续,右连续,左极限,右极限,左导数,右导数,导函数的左极限,导函数的右极限。
▶2.罗尔定理
设函数f(x)在闭区间[a,b]上连续(其中a不等于b),在开区间(a,b)上可导,且f(a)=f(b),那么至少存在一点ξ∈(a、b),使得f‘(ξ)=0。罗尔定理是以法国数学家罗尔的名字命名的。罗尔定理的三个已知条件的意义,①f(x)在[a,b]上连续表明曲线连同端点在内是无缝隙的曲线;②f(x)在内(a,b)可导表明曲线y=f(x)在每一点处有切线存在;③f(a)=f(b)表明曲线的割线(直线AB)平行于x轴;罗尔定理的结论的直几何意义是:在(a,b)内至少能找到一点ξ,使f’(ξ)=0,表明曲线上至少有一点的切线斜率为0,从而切线平行于割线AB,与x轴平行。
▶3.泰勒公式展开的应用专题
我以前,以及我所有的同学,看到泰勒公式就哆嗦,因为咋一看很长很恐怖,瞬间大脑空白,身体失重的感觉。其实在我搞明白一下几点后,原来的症状就没有了。第一: 什么 情况下要进行泰勒展开;第二:以哪一点为中心进行展开;第三:把谁展开;第四:展开到几阶?
▶4.应用多次中值定理的专题
大部分的考研题,一般要考察你应用多次中值定理,最重要的就是要培养自己对这种题目的敏感度,要很快反映老师出这题考哪几个中值定理,我的敏感性是靠自己多练习综合题培养出来的。我会经常会去复习,那样我对中值定理的题目早已没有那种刚学高数时的害怕之极。要想对微分中值定理这块的题目有条理的掌握,看我这个总结定会事半功倍的。
▶5.对称性,轮换性,奇偶性在积分(重积分,线,面积分)中的综合应用
这几乎每年必考,要么小题中考,要么大题中要用,这是必须掌握的知识,但是往往不是那么容易就靠做3,4个题目就能了解这知识点的应用到底有多广泛。
我们做积分题,尤其多重积分和线面积分,死算也许能算出结果,但是要是能用以上性质,那可真是三下五除二搞定,这方面的感觉相信大家有过,可是或许仅仅是昙花一现,因为你做出来了以为以后就一定会在相似的题目中用,其实不然,因为仅仅靠几道题目很大程度上不能给你留下太深刻的印象,下次轮到的时候或许就是考场上了,你可能顿时苦思冥想,最终还是选择了最傻的办法,浪费了宝贵时间。说这些其实就是说明,考场上的正常或超常发挥是建立在平时踏实做,见识广,严要求的基础上。
猜你感兴趣:
2. 文科生复习考研数学的攻略